

Intel® Processor N3XX Family
Windows 7 IO Driver

Software Developer’s Manual

March 2015

2

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,

BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS

PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER

AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING

LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY

PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal

injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU

SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS,

OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE

ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR

DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR

WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the

absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future

definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The

information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to

deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained

by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm Designers must not rely on the absence or

characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall

have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel product may contain design defects or errors known as errata which may cause the product to deviate from published

specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and

other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2012, Intel Corporation. All rights reserved.

3

Contents

CHAPTER 1 .. 5

About this Manual .. 5

1.1 Operating System Covered in This Manual .. 5

CHAPTER 2 .. 6

General Purpose Input Output (GPIO) Driver ... 6

2.1 Driver Features ... 6

2.2 Interface Details ... 6

2.3 IOCTL Usage Details ... 6

2.3.1 IOCTL_GPIO_MUX .. 7

2.3.2 IOCTL_GPIO_DIRECTION .. 7

2.3.3 IOCTL_GPIO_READ ... 8

2.3.4 IOCTL_GPIO_WRITE ... 8

2.3.5 IOCTL_GPIO_QUERY ... 9

2.4 Structures, Enumeration and Macros .. 9

2.4.1 Structures ... 9

2.4.2 Enumeration ... 10

2.4.3 Macros .. 10

2.5 Error Handling .. 10

2.6 Inter-IOCTL Dependencies ... 10

2.7 Programming Guide for GPIO Driver .. 11

2.7.1 Opening the Device .. 11

2.7.2 Driver Configuration ... 11

2.7.3 Read and Write Operation ... 13

2.7.4 Close the Device ... 13

CHAPTER 3 .. 14

Inter Integrated Circuit (I2C) Driver .. 14

3.1 Driver Features ... 14

3.2 Interface Details ... 14

3.3 Structures and Macros ... 15

4

3.3.1 Structures ... 15

3.3.2 Macros .. 15

3.4 Error Handling .. 15

3.5 Programming Guide ... 16

3.5.1 Open Device ... 16

3.5.2 Read, Write, and Sequence Operation .. 16

3.5.3 Close Device ... 21

CHAPTER 4 .. 22

High Speed UART (HS-UART) Driver .. 22

4.1 Driver Features ... 22

4.2 Interface Details ... 22

4.3 IOCTL Usage Details ... 23

4.3.1 IOCTL_SERIAL_SET_BAUD_RATE .. 23

4.3.2 IOCTL_SERIAL_SET_LINE_CONTROL ... 24

4.3.3 IOCTL_SERIAL_SET_TIMEOUTS .. 24

4.3.4 IOCTL_SERIAL_SET_HANDFLOW .. 25

4.4 Structures and Macros ... 26

4.4.1 Enumerations ... 26

4.4.2 HS-UART STRUCT and MICROS ... 26

4.5 Error Handling .. 26

4.6 Programming Guide ... 26

4.6.1 Open Device ... 27

4.6.2 Set UART device ... 27

4.6.3 Read/Write Operation ... 27

4.6.4 Close Device ... 27

5

CHAPTER 1

About this Manual

1.1 Operating System Covered in This Manual

This manual set includes information pertaining to the following set of Operating system

 Windows 7 Ultimate 32 bit SP1

 Windows 7 Ultimate 64 bit SP1

 Windows Embedded Standard 32 bit SP1

 Windows Embedded Standard 64 bit SP1

The IO drivers are dependent on the Operating System (OS) driver installation.

Note: Minor update to GPIO, I2C and HSUART driver on structure definition in public driver header file from beta

driver to gold driver. Recompile your applications with the latest public driver header.

6

CHAPTER 2

General Purpose Input Output (GPIO) Driver

This section provides the programming details and interfaces exposed by the General Purpose Input
Output (GPIO) driver for Windows. The current implementation of the driver exposes the interfaces
through Input / Output Controls (IOCTLs), which can be called from the application (user mode) using the
Win32 API DeviceIoControl (Refer to the MSDN documentation for more details on this API). The following
sections provide information about the IOCTLs and how to use them to configure the GPIO hardware.

2.1 Driver Features

The GPIO Driver supports:

 Setting of different function for GPIO hardware

 Writing data to GPIO hardware

 Reading data from GPIO hardware

 Setting the direction of GPIO hardware

 Querying the function of GPIO hardware

2.2 Interface Details

Table 1 lists IOCTLs supported by the driver.

No IOCTL Remarks

1 IOCTL_GPIO_READ Read the data of selected pin of given GPIO controller

2 IOCTL_GPIO_WRITE Write the data of selected pin of given GPIO controller

3 IOCTL_GPIO_DIRECTION Set the direction of the selected pin of given GPIO controller

4 IOCTL_GPIO_MUX Set the function of the selected pin of given GPIO port

5 IOCTL_GPIO_QUERY Query the function of the selected pin of given GPIO port

Table 1. Supported IOCTLs

2.3 IOCTL Usage Details

This section assumes a single client model where there is a single application-level program configuring
the GPIO interface and initiating I/O operations. The following files contain the details of the IOCTLs and
data structures used:

 public.h – contains IOCTL definitions, data structures and other variables used by the IOCTLs

7

2.3.1 IOCTL_GPIO_MUX

This IOCTL is called to set the function mode of the selected pin of given GPIO controller. The
prerequisite for this is that the device must be installed and opened using the Win32 API CreateFile.

GPIO_PIN_PARAMETERS parameter;

parameter.pin = pin;

parameter.u.data = function;

DeviceIoControl(hHandle,

IOCTL_GPIO_DIRECTION,

& GPIO_PIN_PARAMETERS,

sizeof(GPIO_PIN_PARAMETERS),

NULL,

0,

&dwSize,

NULL);

2.3.2 IOCTL_GPIO_DIRECTION

This IOCTL is called to set the direction of the selected pin of given GPIO controller. The prerequisite for
this is that the device must be installed and opened using the Win32 API CreateFile and the pin is set to
GPIO function mode.

GPIO_PIN_PARAMETERS parameter;

parameter.pin = pin;

parameter.u.ConnectMode = direction;

DeviceIoControl(hHandle,

IOCTL_GPIO_DIRECTION,

& GPIO_PIN_PARAMETERS,

sizeof(GPIO_PIN_PARAMETERS),

NULL,

0,

&dwSize,

NULL);

8

2.3.3 IOCTL_GPIO_READ

Read the data of selected pin of given GPIO controller. The prerequisite for this is that the device must
be installed and opened using the Win32 API CreateFile.

GPIO_PIN_PARAMETERS parameter;

parameter.pin = pin;

DeviceIoControl(hHandle,

IOCTL_GPIO_READ,

¶meter,

sizeof(GPIO_PIN_PARAMETERS),

¶meter,

sizeof(GPIO_PIN_PARAMETERS),

&dwSize,

NULL);

2.3.4 IOCTL_GPIO_WRITE

The write operation writes to the selected pin of the GPIO controller. The prerequisite for this is that the
device must be installed and opened using the Win32 API CreateFile and the pin direction is set to
output.

GPIO_PIN_PARAMETERS parameter;

parameter.pin = pin;

parameter.u.data = ConnectModeOutput;

DeviceIoControl(hHandle,

IOCTL_GPIO_DIRECTION,

¶meter,

sizeof(GPIO_PIN_PARAMETERS),

¶meter,

sizeof(GPIO_PIN_PARAMETERS),

&dwSize,

NULL);

parameter.pin = pin;

DeviceIoControl(hHandle,

IOCTL_GPIO_WRITE,

¶meter,

sizeof(GPIO_PIN_PARAMETERS),

¶meter,

sizeof(GPIO_PIN_PARAMETERS),

&dwSize,

NULL);

9

2.3.5 IOCTL_GPIO_QUERY

This IOCTL is called to query the function mode of the selected pin of given GPIO controller. The
prerequisite for this is that the device must be installed and opened using the Win32 API CreateFile

GPIO_PIN_PARAMETERS parameter;

parameter.pin = pin;

DeviceIoControl(hHandle,

IOCTL_GPIO_QUERY,

¶meter,

sizeof(GPIO_PIN_PARAMETERS),

¶meter,

sizeof(GPIO_PIN_PARAMETERS),

&dwSize,

NULL);

2.4 Structures, Enumeration and Macros

This section provides the details on the structures, enumerations and macros used by interfaces
exposed by the GPIO driver. All the structures, enumerations and macros used by the interfaces are
defined in public.h.

2.4.1 Structures

GPIO Pin Parameters

This structure is a used for preserving information related to the GPIO request.

Name Description

ULONG pin Select the pin number

union

{

 ULONG data;

 GPIO_CONNECT_IO_PINS_MODE

ConnectMode;

 } u;

Data in the case of read return the read pin

value, Data in the case of write is the data to

be written to the pin, Data in the case of mux is

the function to be set to the pin, Data in the

case of query return the function of pin.

ConnectMode in the case of direction set the

direction of the pin.

10

2.4.2 Enumeration

GPIO_CONNECT_IO_PINS_MODE

This enum is used for preserving information related to the direction.

Name Description

CONNECT_MODE_INPUT Set direction as input

CONNECT_MODE_OUTPUT Set direction as output

2.4.3 Macros

Currently there are no macros defined for the GPIO driver.

2.5 Error Handling

Since the IOCTL command is implemented using the Windows API, the return value of the call is dependent
on and defined by the OS. On Windows, the return value is a non-zero value. If the error is detected within
or outside the driver, an appropriate system defined value is returned by the driver.

2.6 Inter-IOCTL Dependencies

There are no inter-IOCTL dependencies for GPIO driver. Once the driver is loaded successfully, the
IOCTLs stated above can be used in any order.

11

2.7 Programming Guide for GPIO Driver

This section describes the basic procedure for using the GPIO driver from a user mode application. All
operations are through the IOCTLs exposed by the GPIO driver. Refer to Section 4.3 for details on the
IOCTLs. The steps involved in accessing the GPIO driver from the user mode application are described
below:

 Open the device

 Initialize and configure the driver with desired settings through the interfaces exposed.

 Perform read/write operations.

 Close the device.

2.7.1 Opening the Device

The GPIO driver is opened using the Win32 CreateFile API.

Using GUID Interface Exposed by the driver

A device interface class is a way of exporting device and driver functionality to other system components,
including other drivers, as well as user-mode applications. A driver can register a device interface class,
and then enable an instance of the class for each device object to which user-mode I/O requests might be
sent. The GPIO driver registers the following interface.

No Interface Name

1 GUID_DEVINTERFACE_GPIO

This is defined in public.h. Device interfaces are available to both kernel-mode components and user-
mode applications. User-mode code can use SetupDiXxx functions to find out about registered, enabled
device interfaces.

Please refer the following site to get the details about SetupDiXxx functions.
http://msdn.microsoft.com/en-us/library/ff549791.aspx

There are three GPIO controllers in the system, you should first determine which GPIO controller you want
to open. By checking the path name returned by call SetupDiGetDeviceInterfaceDetail, you can know the
controller type. If the device path returned start with “\\?\acpi#int33b2#1”, it means this controller is
GPIO SCORE, if the device path returned start with “\\?\\acpi#int33b2#2”, it means this controller is GPIO
NCORE, if the device path returned start with “\\?\\acpi#int33b2#3”, it means this controller is GPIO SUS.

2.7.2 Driver Configuration

The following IOCTLS are used to initialize, configure and query the settings for the GPIO driver:

 IOCTL_GPIO_DIRECTION

 IOCTL_GPIO_MUX

 IOCTL_GPIO_QUERY
DeviceIoControl Win32 API is used for sending information to the GPIO driver.

http://msdn.microsoft.com/en-us/library/ff549791.aspx

12

Direction Operation

This IOCTL used to set the pin direction when pin is in GPIO function mode.

GPIO_PIN_PARAMETERS parameter;

parameter.pin = pin;

parameter.u.ConnectMode = direction

DeviceIoControl(hHandle,

IOCTL_GPIO_DIRECTION,

¶meter,

sizeof(GPIO_PIN_PARAMETERS),

¶meter,

sizeof(GPIO_PIN_PARAMETERS),

&dwSize,

NULL);

The parameter.u.ConnectMode is used to set the pin direction.

Mux Operation

This IOCTL used to set pin to select function mode.

GPIO_PIN_PARAMETERS parameter;

parameter.pin = pin;

parameter.u.data = function;

DeviceIoControl(hHandle,

IOCTL_GPIO_MUX,

¶meter,

sizeof(GPIO_PIN_PARAMETERS),

¶meter,

sizeof(GPIO_PIN_PARAMETERS),

&dwSize,

NULL);

The parameter.u.data is used to set the pin function.

Query Operation

This IOCTL used to query the pin function mode.

GPIO_PIN_PARAMETERS parameter;

parameter.pin = pin;

DeviceIoControl(hHandle,

IOCTL_GPIO_QUERY,

¶meter,

sizeof(GPIO_PIN_PARAMETERS),

¶meter,

sizeof(GPIO_PIN_PARAMETERS),

&dwSize,

NULL);

The parameter.u.data is used to save the returned pin function value.

13

2.7.3 Read and Write Operation

IOCTL_GPIO_READ and IOCTL_GPIO_WRITE are used for read and write operations respectively.

Read Operation
GPIO_PIN_PARAMETERS parameter;

parameter.pin = pin;

DeviceIoControl(hHandle,

IOCTL_GPIO_READ,

¶meter,

sizeof(GPIO_PIN_PARAMETERS),

¶meter,

sizeof(GPIO_PIN_PARAMETERS),

&dwSize,

NULL);

The parameter.u.data is used to save the return pin value.

Write Operation

To write a value to a pin, the pin must first set to output mode.

GPIO_PIN_PARAMETERS parameter;

parameter.pin = pin;

parameter.u.ConnectMode = ConnectModeOutput;

DeviceIoControl(hHandle,

IOCTL_GPIO_DIRECTION,

¶meter,

sizeof(GPIO_PIN_PARAMETERS),

¶meter,

sizeof(GPIO_PIN_PARAMETERS),

&dwSize,

NULL);

parameter.pin = pin;

parameter.u.data = value;

DeviceIoControl(hHandle,

IOCTL_GPIO_WRITE,

¶meter,

sizeof(GPIO_PIN_PARAMETERS),

¶meter,

sizeof(GPIO_PIN_PARAMETERS),

&dwSize,

NULL);

The parameter.u.data is used to set the value write to the pin.

2.7.4 Close the Device

Once all the operations related to the GPIO driver are finished, the device handle must free the
application by calling the Win32 API CloseHandle.

CloseHandle(hHandle);

14

CHAPTER 3

Inter Integrated Circuit (I2C) Driver

This section describes the programming details of the Inter Integrated Circuit (I2C) driver for Windows 7.

This includes the information about the interfaces exposed by the driver and how to use the interfaces to

drive the I2C hardware through Input/Output Controls (IOCTLs), which can be called from the application

(user mode) using the Win32 API DeviceIoControl. Refer to the MSDN documentation for more details on

this API.

I2C (Inter-Integrated Circuit) is a multi-master serial computer bus that is used to attach low-speed

peripherals to a motherboard or embedded system. I2C uses only two bidirectional open-drain lines, Serial

Data Line (SDA) and Serial Clock (SCL), pulled up with resistors.

3.1 Driver Features

The I2C Driver supports:

 Setting different configurations for I2C hardware.

 Master device only.

 Setting I2C slave device address.

 Mode Select – fast mode (400 kbps) or standard mode (100 kbps) only.

 I2C Bus Master byte/multi-byte read transactions.

 I2C Bus Master byte/multi-byte write transactions.

3.2 Interface Details

No IOCTL Remark

1 IOCTL_I2C_EXECUTE_WRITE
Configure slave address, address mode and speed,
and then write data to the assigned slave device.

2 IOCTL_I2C_EXECUTE_READ
Configure slave address, address mode and speed,
and then read data from the assigned slave device.

3 IOCTL_I2C_EXECUTE_SEQUENCE

Process a serial of Reads/Writes. Each one can have
its own configuration.
NOTE: Only ONE STOP bit will be produced after all
items of one sequence done.
So two independent serials should not be combined
into one sequence, if each of them must produce
STOP bit respectively after complete.

15

3.3 Structures and Macros

3.3.1 Structures

enum I2C_BUS_SPEED

This enum defines the I2C transmission speeds.

enum I2C_ADDRESS_MODE

This enum defines the address modes for slave device.

struct I2C_SINGLE_TRANSMISSION

This structure contains transmission data and I2C bus configuration.

struct I2C_SEQUENCE_TRANSMISSION

This structure contains one transmission data of one item in a sequence and related I2C bus

configuration.

3.3.2 Macros

I2C_SEQUENCE_TRANSMISSION_ENTRY

This macro helps initialize a sequence structure, which can contain more than one read/write item.

I2C_SEQUENCE_ITEM_INIT

This macro initializes related I2C configuration and data buffer pointer of one item in a sequence

transmission.

3.4 Error Handling

Since the IOCTL command is implemented using the Windows API, the return value of the call is

dependent on and defined by the OS. On Windows, the return value is a non-zero value. If the error is

detected within or outside the driver, an appropriate system defined value will be returned by the

driver.

16

3.5 Programming Guide

This section explains the basic procedure to use the I2C driver from a user application mode. All operations

are performed through the IOCTLs that are exposed by the I2C driver.

3.5.1 Open Device

The I2C driver is opened using the Win32 CreateFile API. To get the device name, use GUID interface

exposed by the driver: I2C_LPSS_INTERFACE_GUID, defined in public.h.

A device interface class is a way of exporting device and driver functionality to other system

components, including other drivers, as well as user-mode applications. A driver can register a device

interface class, and then enable an instance of the class for each device object to which user-mode I/O

requests might be sent.

Device interfaces are available to both kernel-mode components and user-mode applications. User-

mode code can use SetupDiXxx functions to find out about registered, enabled device interfaces. Please

refer the following site to get the details about SetupDiXxx functions.

http://msdn.microsoft.com/en-us/library/dd406734.aspx

Since there are more than one I2C controller in BYT-I platform, and they share the same GUID, when

user-mode applications open I2C device using SetupDiXxx, they will get a device name list of all I2C

controller interfaces. At this time, they should also compare the hardware ID they need to each item of

that list, so as to be able open the correct controller they need.

3.5.2 Read, Write, and Sequence Operation

IOCTL_I2C_EXECUTE_READ, IOCTL_I2C_EXECUTE_WRITE and IOCTL_I2C_EXECUTE_SEQUENCE are used

for read, write, and sequence operation respectively.

(Maximum single transfer size is 64k, but this value may be updated in further, check the platform user

guide for latest value)

Transmission block initialization

Before doing transmission, a transmission structure variable must be defined in advance.

For example:

I2C_SINGLE_TRANSMISSION transmission;

The Application should use asynchronous method of IOCTL to do read/write operation. So before using

DeviceIoControl, structure Overlapped must be initialized first. Please refer to the following link to get

detailed information:

http://msdn.microsoft.com/en-us/library/windows/desktop/ms686358%28v=vs.85%29.aspx

http://msdn.microsoft.com/en-us/library/dd406734.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms686358%28v=vs.85%29.aspx

17

18

IOCTL_I2C_EXECUTE_READ Code Example

#include “I2Cpublic.h”

I2C_SINGLE_TRANSMISSION readTransmission;
UCHAR readBuf[BUF_SIZE] = {};
UINT16 slaveAdr = 0x1C;

readTransmission.Address = slaveAdr;
readTransmission.AddressMode = AddressMode7Bit;
readTransmission.BusSpeed = I2C_BUS_SPEED_400KHZ;
readTransmission.DataLength = sizeof(readBuf);
readTransmission.pBuffer = readBuf;

status = DeviceIoControl(
 fileHandler,
 IOCTL_I2C_EXECUTE_READ,
 NULL,
 0,
 &readTransmission,
 sizeof(readTransmission),
 NULL,
 &Overlapped);

if(status || (GetLastError() == ERROR_IO_PENDING))
{
 status = GetOverlappedResult(
 fileHandler,
 &Overlapped,
 &bytesReturned,
 TRUE);

if(status)
{
 /****
 * Now readBuf contains data that read from slave device.
 ****/
}

}

19

IOCTL_I2C_EXECUTE_WRITE Code Example

#include “public.h”

I2C_SINGLE_TRANSMISSION writeTransmission;
UCHAR writeBuf[BUF_SIZE] = {};
UINT16 slaveAdr = 0x1C;

writeTransmission.Address = slaveAdr;
writeTransmission.AddressMode = AddressMode7Bit;
writeTransmission.BusSpeed = I2C_BUS_SPEED_400KHZ;
writeTransmission.DataLength = sizeof(writeBuf);
writeTransmission.pBuffer = writeBuf;

status = DeviceIoControl(
 fileHandler,
 IOCTL_I2C_EXECUTE_WRITE,
 &writeTransmission,
 sizeof(writeTransmission),
 NULL,
 0,
 NULL,
 &Overlapped);

if(status || (GetLastError() == ERROR_IO_PENDING))
{

status = GetOverlappedResult(
 fileHandler,
 &Overlapped,
 &bytesReturned,TRUE);
if(status)
{
 /****
 * Now data in writeBuf have been transmitted to slave device.
 ****/
}

}

20

IOCTL_I2C_EXECUTE_SEQUENCE Code Example

#include “public.h”

I2C_SEQUENCE_TRANSMISSION_ENTRY(2) sequence;
sequence.Size = 2;

USHORT regAddr = 0x0000;
UCHAR readBuf[BUF_SIZE] = {};
UINT16 slaveAdr = 0x1C;
UINT32 delayInUs = 100;

/* Initialize write item in sequence*/
I2C_SEQUENCE_ITEM_INIT(
 sequence.List[0],
 AddressMode7Bit,
 slaveAdr,
 I2C_BUS_SPEED_400KHZ,
 SpbTransferDirectionToDevice,
 delayInUs,
 sizeof(regAddr),
 ®Addr);

/* Initialize read item in sequence*/
I2C_SEQUENCE_ITEM_INIT(
 sequence.List[1],
 AddressMode7Bit,
 slaveAdr,
 I2C_BUS_SPEED_400KHZ,
 SpbTransferDirectionFromDevice,
 delayInUs,
 sizeof(readBuf),
 readBuf);

status = DeviceIoControl(
 fileHandler,
 IOCTL_I2C_EXECUTE_SEQUENCE,
 NULL,
 0,
 &sequence,
 sizeof(sequence),
 NULL,
 &Overlapped);

if(status || (GetLastError() == ERROR_IO_PENDING))
{

status = GetOverlappedResult(

21

 fileHandler,
 &Overlapped,
 &bytesReturned,TRUE);
if(status)
{
 /****
 * Now data in regAddr have been transmitted to slave device,
 * and readBuf contains data read from slave device.
 * No STOP bit between item_0 and item_1.
 ****/
}

}

3.5.3 Close Device

Once all operations related to the I2C driver are finished the device handle must free the application by

calling the Win32 API CloseHandle.

CloseHandle(hHandle);

22

CHAPTER 4

High Speed UART (HS-UART) Driver

This section provides the programming details of the High Speed UART (HS-UART) driver for Windows.

This includes information about the interfaces exposed by the driver and how to use those interfaces to

drive the HS-UART hardware. The current implementation of the driver exposes the interfaces through

Input/Output Controls (IOCTLs), which can be called from the application (user mode) using the Win32

API DeviceIoControl (refer to the MSDN documentation for more details on this API).

The HS-UART bus is a communication bus that operates in full / half duplex mode. The Soc implements

two instances of HS-UART controller that support baud rates between 300 and 3686400. Hardware flow

control is also supported.

.

4.1 Driver Features

The HS-UART Driver allows setting different configurations for HS-UART hardware. It supports:

• Setting StopBits / Parity Check / Word Length.

• Supports Hardware flow control
• Different Baud rate – from 300 to 3686400.
• Read any setting from current hardware.

4.2 Interface Details

The below Table 1 lists the IOCTLs supported by the HS-UART driver.

No IOCTL Description

1 IOCTL_SERIAL_SET_BAUD_RATE This IOCTL is used to set the baud rate of transmission.

3 IOCTL_SERIAL_SET_LINE_CONTROL This IOCTL is used to set Parity/StopBits/WordLength
information to the devices.

7 IOCTL_SERIAL_SET_TIMEOUTS This IOCTL is used to set the timeouts for transmission.

25 IOCTL_SERIAL_SET_HANDFLOW This IOCTL is used to Flow control mode.

23

4.3 IOCTL Usage Details

4.3.1 IOCTL_SERIAL_SET_BAUD_RATE

This IOCTL is used to set the baud rate for the operation.

BOOLEAN SetBaudrate(HANDLE hf,ULONG BaudRate_set)
{
 BOOL bResult;
 DWORD junk;
 bResult = DeviceIoControl(hf,IOCTL_SERIAL_SET_BAUD_RATE,
 &BaudRate_set,sizeof(BaudRate_set),NULL,0,&junk,(LPOVERLAPPED)NULL);
 if(bResult)
 {
 printf("Info : BaudRate set OK.\n");
 return TRUE;
 }
 else
 {
 SetConsoleTextAttribute(hConsole, TEXT_COLOR_RED);
 printf("Error: BaudRate set failed.\n");
 SetConsoleTextAttribute(hConsole, TEXT_COLOR_DEFAULT);
 return FALSE;
 }
}

24

4.3.2 IOCTL_SERIAL_SET_LINE_CONTROL

This IOCTL is used to set Parity/StopBits/WordLength information.

BOOLEAN SetLineCtl(HANDLE hf,UCHAR StopBits,UCHAR Parity,UCHAR WordLength)
{
 BOOL bResult;
 DWORD junk;
 SERIAL_LINE_CONTROL LineCtl;
 LineCtl.Parity = Parity;

LineCtl.StopBits = StopBits;
LineCtl.WordLength = WordLength;

 bResult = DeviceIoControl(hf,IOCTL_SERIAL_SET_LINE_CONTROL,

&LineCtl,sizeof(SERIAL_LINE_CONTROL),NULL,0,&junk,(LPOVERLAPPED)NULL);
 if(bResult)
 {
 printf("Info : Linectl set OK.\n");
 return TRUE;
 }
 else
 {
 SetConsoleTextAttribute(hConsole, TEXT_COLOR_RED);
 printf("Error: Linectl set failed.\n");
 SetConsoleTextAttribute(hConsole, TEXT_COLOR_DEFAULT);
 return FALSE;
 }
}

4.3.3 IOCTL_SERIAL_SET_TIMEOUTS

This IOCTL is used to set the timeouts for operation.

BOOLEAN SetTimeouts(HANDLE hf, ULONG baud)
{
 BOOL bResult;
 DWORD junk;
 COMMTIMEOUTS timeout;

 timeout.ReadIntervalTimeout = intervalTimeout;//1000;
 timeout.ReadTotalTimeoutConstant = readTimeout;
 timeout.ReadTotalTimeoutMultiplier = 0;//(1000*10/baud)+1;
 timeout.WriteTotalTimeoutConstant = writeTimeout;
 timeout.WriteTotalTimeoutMultiplier = 0;//(1000*10/baud)+1;

 bResult = DeviceIoControl(hf,IOCTL_SERIAL_SET_TIMEOUTS,
 &timeout,sizeof(timeout),NULL,0,&junk,(LPOVERLAPPED)NULL);
 if(bResult)
 {
 printf("Info : set Timtout OK.\n");
 printf("Info : Timeout.ReadIntervalTimeout = %d
ms\n",timeout.ReadIntervalTimeout);
 printf("Info : Timeout.ReadTotalTimeoutConstant = %d

25

ms\n",timeout.ReadTotalTimeoutConstant);
 printf("Info : Timeout.ReadTotalTimeoutMultiplier = %d
ms\n",timeout.ReadTotalTimeoutMultiplier);
 printf("Info : Timeout.WriteTotalTimeoutConstant = %d
ms\n",timeout.WriteTotalTimeoutConstant);
 printf("Info : Timeout.WriteTotalTimeoutMultiplier = %d
ms\n",timeout.WriteTotalTimeoutMultiplier);
 return TRUE;
 }
 else
 {
 SetConsoleTextAttribute(hConsole, TEXT_COLOR_RED);
 printf("Error: set Timeout failed.\n");
 SetConsoleTextAttribute(hConsole, TEXT_COLOR_DEFAULT);
 return FALSE;
 }

}

4.3.4 IOCTL_SERIAL_SET_HANDFLOW

This IOCTL is used to set flow control mode for operation.

BOOLEAN SetHandflow(HANDLE hf,ULONG ControlHandShake,ULONG FlowReplace,LONG XonLimit,LONG
XoffLimit)
{
 BOOL bResult;
 DWORD junk;
 SERIAL_HANDFLOW HandFlow;
 HandFlow.ControlHandShake = ControlHandShake;
 HandFlow.FlowReplace = FlowReplace;
 HandFlow.XoffLimit = XonLimit;

HandFlow.XonLimit = XoffLimit;
 bResult = DeviceIoControl(hf,IOCTL_SERIAL_SET_HANDFLOW,
 &HandFlow,sizeof(SERIAL_HANDFLOW),NULL,0,&junk,(LPOVERLAPPED)NULL);
 if(bResult)
 {
 printf("Info : HandFlow set OK.\n");
 return TRUE;
 }
 else
 {
 SetConsoleTextAttribute(hConsole, TEXT_COLOR_RED);
 printf("Error: HandFlow set failed.\n");
 SetConsoleTextAttribute(hConsole, TEXT_COLOR_DEFAULT);
 return FALSE;
 }
}

26

4.4 Structures and Macros

4.4.1 Enumerations

Name Description
UART_SERIAL_FLAG_FLOW_CTL_NONE None Flow Control
UART_SERIAL_FLAG_FLOW_CTL_HW Hardware Flow Control
UART_SERIAL_FLAG_FLOW_CTL_XONXOFF XON/XOFF Software Flow Control

4.4.2 HS-UART STRUCT and MICROS

typedef struct _PNP_UART_SERIAL_BUS_DESCRIPTOR {
 ULONG BaudRate;
 USHORT RxBufferSize;
 USHORT TxBufferSize;
 UCHAR Parity;
 UCHAR SerialLinesEnabled;
 // follwed by optional Vendor Data
 // followed by resource name string
} PNP_UART_SERIAL_BUS_DESCRIPTOR, *PPNP_UART_SERIAL_BUS_DESCRIPTOR;

4.5 Error Handling

Since the IOCTL command is implemented using the Windows* API, the return value of the call is

dependent on and defined by the OS. On Windows*, the return value is a non-zero value. If the error is

detected within or outside the driver, an appropriate system defined value is returned by the driver.

4.6 Programming Guide

This section describes the basic procedure for using the HS-UART driver from a user mode application.

All operations are through the IOCTLs exposed by the HS-UART driver. Refer to Section 5.3 for details on

the IOCTLs. The steps involved in accessing the HS-UART driver from the user mode application are

described below:

• Open the device.

• Set UART device.

• Perform read/write operations.

• Close the device.

27

4.6.1 Open Device

HS-UART driver is opened using the Win32 CreateFileA API. To retrieve the device name, see below

explanation.

FileName will be COM2~COMx. The number of COM port will be showed at DeviceManager.

4.6.2 Set UART device

IOCTL_SERIAL_SET_BAUD_RATE
IOCTL_SERIAL_SET_LINE_CONTROL
IOCTL_SERIAL_SET_TIMEOUTS
IOCTL_SERIAL_SET_HANDFLOW

 Above IOCTLs are used for set operations respectively.

See Section 5.3 section.

4.6.3 Read/Write Operation

Read/Write HS-UART Device by Win32 ReadFile/WriteFile API.

4.6.4 Close Device

Once all the operations related to the HS-UART driver are completed, the device handle must be freed
by the application by calling the Win32 API CloseHandle.

 CloseHandle(hHandle);

